Cool Pomelo

Per aspera ad astra. 循此苦旅,以达天际。

欢迎来到 PomelorinCool-breeze 的博客!希望我们能相互交流,共同进步

图标是清爽葡萄柚汽水(确信)。

阅读全文 »

树上启发式合并。

树上启发式合并

例如计算 \(\sum_{d(x)=d(y),1\le x<y\le n}d(y)-d(lca(x,y))\)

\(O(n\log n)\) 版:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
vector<ll> e[N];
ll a[N], d[N], cnt[N], big[N], siz[N], ans;
ll dfn[N], L[N], R[N], index;
ll n, m;

ll dfs(ll root, ll dad) {
ll curb = 0;
d[root] = d[dad] + 1;
siz[root]++;
dfn[++index] = root;
L[root] = index;
for (auto son: e[root]) {
if (son == dad)
continue;
siz[root] += dfs(son, root);
if (siz[son] > curb) {
curb = siz[son];
big[root] = son;
}
}
R[root] = index;
return siz[root];
}

void dsu(ll root, ll dad, ll keep) {
for (auto son: e[root]) {
if (son == dad || son == big[root])
continue;
dsu(son, root, 0);
}
if (big[root])
dsu(big[root], root, 1);
for (auto son: e[root]) {
if (son == dad || son == big[root])
continue;
for (ll i = L[son]; i <= R[son]; i++) {
ans += cnt[d[dfn[i]]] * (d[dfn[i]] - d[root]);
}
for (ll i = L[son]; i <= R[son]; i++) {
cnt[d[dfn[i]]]++;
}
}
cnt[d[root]]++;
if (keep == 0) {
for (ll i = L[root]; i <= R[root]; i++) {
cnt[d[dfn[i]]]--;
}
}
}

简介

线段树,是用来存放给定区间内对应信息的一种数据结构,是一种二叉搜索树。可用来处理数组相应的单点、区间修改操作,也可以进行区间最值、区间和等的查询。

阅读全文 »

二叉堆

介绍

二叉堆主要支持的操作有:插入一个数 \(O(\log n)\)、查询最小值 \(O(1)\)、删除最小值 \(O(\log n)\)

二叉堆是一棵完全二叉树,其每个节点都有一个值,且每个节点的值都大于等于/小于等于其父亲的值。每个节点的值都大于等于其父亲值的堆叫做小根堆(即根最小),否则叫做大根堆。STL 中的 priority_queue 其实就是一个大根堆。

阅读全文 »

模板——图论

Floyd 算法,SPFA 算法(慎用),Dijkstra 算法,强连通分量,Prim 算法,Kruskal 算法,Dinic 最大流,欧拉路。

阅读全文 »

模板——杂项

Clion 配置快捷键,KMP,LCA,SG 函数,二进制相关,数位 DP,费马平方和定理,对抗搜索。

阅读全文 »

模板——数据结构

ST 表,Trie 树,线段树,树状数组,并查集,动态开点线段树,主席树,lower_bound 用法,树套树,笛卡尔树,树链剖分。

阅读全文 »

模板——数学类

快速幂,质数线性筛,因数分解,欧几里得(gcd),扩展欧几里得(exgcd),求欧拉函数 \(\varphi(x)\),欧拉定理,扩展欧拉定理,中国剩余定理(CRT),在任意模意义下的逆元,同余最短路,组合数,Lucas 定理,卡特兰数,递推求逆元,拉格朗日插值,康托展开,高斯消元,矩阵快速幂。

阅读全文 »


0%